Taxi 0-22 - Netflix

Written on

Taxi 0-22 is a Canadian television comedy series. The series stars Patrick Huard as Montreal cab driver Rogatien Dubois Jr. The first season is predominantly set inside Dubois's dark blue taxi, a Ford Crown Victoria, and the comedy unfolds through his interactions – usually opinionated and deeply held – with the guest stars and other passengers who ride in his cab. Season two expanded the show's narrative to focus more on stories and characters outside of his taxi. Dubois speaks a thickly accented and rapidly delivered Quebec slang.

Taxi 0-22 - Netflix

Type: Scripted

Languages: French

Status: Ended

Runtime: 30 minutes

Premier: 2007-01-25

Taxi 0-22 - Taxis - Netflix

A taxis (plural taxes , from Ancient Greek τάξις (taxis), meaning 'arrangement') is the movement of an organism in response to a stimulus such as light or the presence of food. Taxes are innate behavioural responses. A taxis differs from a tropism (turning response, often growth towards or away from a stimulus) in that in the case of taxis, the organism has motility and demonstrates guided movement towards or away from the stimulus source. It is sometimes distinguished from a kinesis, a non-directional change in activity in response to a stimulus.

Taxi 0-22 - Examples - Netflix

Aerotaxis is the response of an organism to variation in oxygen concentration, and is mainly found in aerobic bacteria. Anemotaxis is the response of an organism to wind. Many insects show a positive anemotactic response (turning/flying into the wind) upon exposure to an airborne stimulus cue from a food source. Chemotaxis is a response elicited by chemicals: that is, a response to a chemical concentration gradient. For example, chemotaxis in response to a sugar gradient has been observed in motile bacteria such as E. coli. Chemotaxis also occurs in the antherozoids of liverworts, ferns, and mosses in response to chemicals secreted by the archegonia. Unicellular (e.g. protozoa) or multicellular (e.g. worms) organisms are targets of chemotactic substances. A concentration gradient of chemicals developed in a fluid phase guides the vectorial movement of responder cells or organisms. Inducers of locomotion towards increasing steps of concentrations are considered as chemoattractants, while chemorepellents result moving off the chemical. Chemotaxis is described in prokaryotic and eukaryotic cells, but signalling mechanisms (receptors, intracellular signaling) and effectors are significantly different. Durotaxis is the directional movement of a cell along a stiffness gradient. Electrotaxis (or galvanotaxis) is the directional movement of motile cells in response to an electric field. It has been suggested that by detecting and orienting themselves toward the electric fields, cells are able to direct their movement towards the damages or wounds to repair the defect. It also is suggested that such a movement may contribute to directional growth of cells and tissues during development and regeneration. This notion is based on the existence of measurable electric fields that naturally occur during wound healing, development and regeneration; and cells in cultures respond to applied electric fields by directional cell migration – electrotaxis / galvanotaxis. Energy taxis is the orientation of bacteria towards conditions of optimal metabolic activity by sensing the internal energetic conditions of cell. Therefore, in contrast to chemotaxis (taxis towards or away from a specific extracellular compound), energy taxis responds on an intracellular stimulus (e.g. proton motive force, activity of NDH- 1) and requires metabolic activity. Gravitaxis (known historically as geotaxis) is a response to the attraction due to gravity. The planktonic larvae of the king crab Lithodes aequispinus use a combination of positive phototaxis (movement towards the light) and negative gravitaxis (upward movement). Both positive and negative gravitaxes are found in a variety of protozoans (e.g., Loxodes, Remanella and Paramecium). Magnetotaxis is, strictly speaking, the ability to sense a magnetic field and coordinate movement in response. However, the term is commonly applied to bacteria that contain magnets and are physically rotated by the force of the earth's magnetic field. In this case, the “behaviour” has nothing to do with sensation and the bacteria are more accurately described as “magnetic bacteria”. Pharotaxis is the movement to a specific location in response to learned or conditioned stimuli, or navigation by means of landmarks. Phonotaxis is the movement of an organism in response to sound. Phototaxis is the movement of an organism in response to light: that is, the response to variation in light intensity and direction. Negative phototaxis, or movement away from a light source, is demonstrated in some insects, such as cockroaches. Positive phototaxis, or movement towards a light source, is advantageous for phototrophic organisms as they can orient themselves most efficiently to receive light for photosynthesis. Many phytoflagellates, e.g. Euglena, and the chloroplasts of higher plants positively phototactic, moving towards a light source. Two types of positive phototaxis are observed in prokaryotes: scotophototaxis is observable as the movement of a bacterium out of the area illuminated by a microscope, when entering darkness signals the cell to reverse direction and reenter the light; a second type of positive phototaxis is true phototaxis, which is a directed movement up a gradient to an increasing amount of light. Rheotaxis is a response to a current in a fluid. Positive rheotaxis is shown by fish turning to face against the current. In a flowing stream, this behaviour leads them to hold their position in a stream rather than being swept downstream. Some fish will exhibit negative rheotaxis where they will avoid currents. Thermotaxis is a migration along a gradient of temperature. Some slime molds and small nematodes can migrate along amazingly small temperature gradients of less than 0.1 °C/cm. They apparently use this behaviour to move to an optimal level in soil. Thigmotaxis is the response of an organism to physical contact or to the proximity of a physical discontinuity in the environment (e.g. rats preferring to swim near the edge of a water maze). Codling moth larvae are believed to used thigmotatic sense to locate fruits to feed on.

Taxi 0-22 - References - Netflix